Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode.

نویسندگان

  • Degao Wang
  • Benjamin D Sherman
  • Byron H Farnum
  • Matthew V Sheridan
  • Seth L Marquard
  • Michael S Eberhart
  • Christopher J Dares
  • Thomas J Meyer
چکیده

Dye-sensitized photoelectrosynthesis cells (DSPECs) provide a flexible approach for solar water splitting based on the integration of molecular light absorption and catalysis on oxide electrodes. Recent advances in this area, including the use of core/shell oxide interfacial structures and surface stabilization by atomic layer deposition, have led to improved charge-separation lifetimes and the ability to obtain substantially improved photocurrent densities. Here, we investigate the introduction of Ag nanoparticles into the core/shell structure and report that they greatly enhance light-driven water oxidation at a DSPEC photoanode. Under 1-sun illumination, Ag nanoparticle electrodes achieved high photocurrent densities, surpassing 2 mA cm-2 with an incident photon-to-current efficiency of 31.8% under 450-nm illumination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally placed nanoscale gold islands film within a TiO2 photoanode for enhanced plasmon light absorption in dye sensitized solar cells

As metal nanostructures demonstrated extraordinary plasmon resonance, their optical characteristics have widely been investigated in photo-electronic applications. However, there has been no clear demonstration on the location effect of plasmonic metal layer within the photoanode on both optical characteristics and photovoltaic performances. In this research, the gold (Au) nano-islands (NIs) fi...

متن کامل

Versatile three-dimensional virus-based template for dye-sensitized solar cells with improved electron transport and light harvesting.

By genetically encoding affinity for inorganic materials into the capsid proteins of the M13 bacteriophage, the virus can act as a template for the synthesis of nanomaterial composites for use in various device applications. Herein, the M13 bacteriophage is employed to build a multifunctional and three-dimensional scaffold capable of improving both electron collection and light harvesting in dy...

متن کامل

Light-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore− Catalyst Assembly

The preparation and characterization of new Ru(II) polypyridylbased chromophore−catalyst assemblies, [(4,4′-PO3H2-bpy)2Ru(4-Mebpy-4′-epic)Ru(bda)(pic)] (1, bpy = 2,2′-bipyridine; 4-Mebpy-4′-epic = 4-(4-methylbipyridin-4′-yl-ethyl)-pyridine; bda = 2,2′-bipyridine-6,6′-dicarboxylate; pic = 4-picoline), and [(bpy)2Ru(4-Mebpy-4′-epic)Ru(bda)(pic)] (1′) are described, as is the application of 1 in a...

متن کامل

Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells.

The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates high bandgap, nanoparticle oxide semiconductors with the light-absorbing and catalytic properties of designed chromophore-catalyst assemblies. The goals are photoelectrochemical water splitting into hydrogen and oxygen and reduction of CO2 by water to give oxygen and carbon-based fuels. Solar-driven water oxidation occurs at a pho...

متن کامل

Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells.

Localized surface plasmon resonance (LSPR) by silver nanoparticles that are photochemically incorporated into an electrode-supported TiO(2) nanoparticulate framework enhances the extinction of a subsequently adsorbed dye (the ruthenium-containing molecule, N719). The enhancement arises from both an increase in the dye's effective absorption cross section and a modest increase in the framework s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 37  شماره 

صفحات  -

تاریخ انتشار 2017